Shifts in perceived position following adaptation to visual motion

نویسنده

  • Robert J. Snowden
چکیده

Where do we perceive an object to be when it is moving? Nijhawan [1] has reported that if a stationary test pattern is briefly flashed in spatial alignment with a moving one, the moving element actually appears displaced in the direction in which it is moving. Nijhawan postulates that this may be the result of a mechanism that predicts the future position of the moving element so as to compensate for the fact that the element will have moved position from the time at which the light left it to the time at which the observer becomes aware of it (as a result of the finite time taken for neural transmission). There is an alternative explanation of this effect, however. Changes in the stimulus presentation could affect perceptual latency [2], and therefore the perceived position if in motion (as suggested for the Pulfrich pendulum effect [3] [4]). In other words, if the flashed probe of the Nijhawan demonstration takes longer to reach perceptual awareness than the moving stimulus, the latter will appear to be ahead of the probe. Here, I demonstrate an alternative way of testing this hypothesis. When an illusory movement is induced (via the motion aftereffect) within a stationary pattern, it can be shown that this also produces a change in its perceived spatial position. As the pattern is stationary, one cannot account for this result via the notion of perceptual lags.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motion-Sensitive Neurones in V5/MT Modulate Perceived Spatial Position

Until recently, it was widely believed that object position and object motion were represented independently in the visual cortex. However, several studies have shown that adaptation to motion produces substantial shifts in the perceived position of subsequently viewed stationary objects. Two stages of motion adaptation have been proposed: an initial stage at the level of V1 and a secondary sta...

متن کامل

Large shifts in perceived motion direction reveal multiple global motion solutions

Moving objects are thought to be decomposed into one-dimensional motion components by early cortical visual processing. Two rules describing how these components might be re-combined to produce coherent object motion are the intersection of constraints and the vector average rules. Using stimuli for which these combination rules predict different directional solutions, we found that adapting on...

متن کامل

Motion-Induced Position Shifts Activate Early Visual Cortex

The ability to correctly determine the position of objects in space is a fundamental task of the visual system. The perceived position of briefly presented static objects can be influenced by nearby moving contours, as demonstrated by various illusions collectively known as motion-induced position shifts. Here we use a stimulus that produces a particularly strong effect of motion on perceived p...

متن کامل

Position shifts following crowded second-order motion adaptation reveal processing of local and global motion without awareness.

Adaptation to first-order (luminance defined) motion produces not only a motion aftereffect but also a position aftereffect, in which a target pattern's perceived location is shifted opposite the direction of adaptation. These aftereffects can occur passively (when the direction of motion adaptation cannot be detected) and remotely (when the target is not at the site of adaptation). Although se...

متن کامل

Motion Adaptation Distorts Perceived Visual Position

After an observer adapts to a moving stimulus, texture within a stationary stimulus is perceived to drift in the opposite direction-the traditional motion aftereffect (MAE). It has recently been shown that the perceived position of objects can be markedly influenced by motion adaptation. In the present study, we examine the selectivity of positional shifts resulting from motion adaptation to st...

متن کامل

The motion-induced shift in the perceived location of a grating also shifts its aftereffect.

Motion can bias the perceived location of a stationary stimulus (Whitney & Cavanagh, 2000), but whether this occurs at a high level of representation or at early, retinotopic stages of visual processing remains an open question. As coding of orientation emerges early in visual processing, we tested whether motion could influence the spatial location at which orientation adaptation is seen. Spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 8  شماره 

صفحات  -

تاریخ انتشار 1998